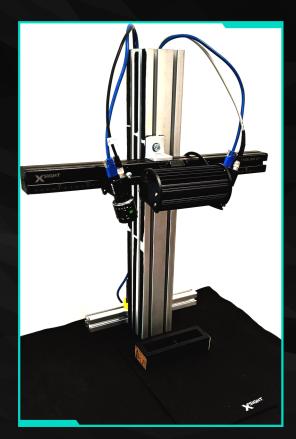


APPLICATION REPORT

www.xsight.eu


3D DIC MEASUREMENT: CONCRETE STIFFENING

APPLICATION SPECIFICATION

The course of concrete stiffening over time was measured using the X-Sight 3D DIC optical measuring system.

Initially, the mold for the measured sample was prepared, and the X-Sight 3D system was placed in the correct position for measurement. A 3D calibration was performed using a calibration grid. Later, the concrete was mixed and poured into the mold. Immediately afterwards, a speckle pattern was applied to the concrete surface using a spray.

The measurement process was performed with Synchron, the external camera trigger developed by X-Sight. During the first 3 hours of the stiffening process, the cameras recorded one frame per minute. For the next 24 hours, the cameras recorded one frame per 5 minutes. After that, the cameras took one frame per hour for 10 days. Constant conditions were maintained over the course of the test.

X-Sight 3D DIC setup

KEYWORDS

- Concrete
- X-Sight 3D DIC
- Synchron
- Long-duration test

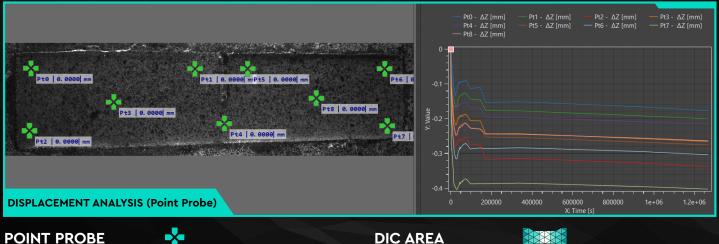
TEST SETUP

X-Sight 3D-M12

- Alpha DIC SW modules: Axial Strain
 (A), DIC Area, Post Process (PP)
- Measuring tools:
 - Point probe
 - DIC Area probe
- Concrete specimen

OUTPUT

Full-field strain analysis

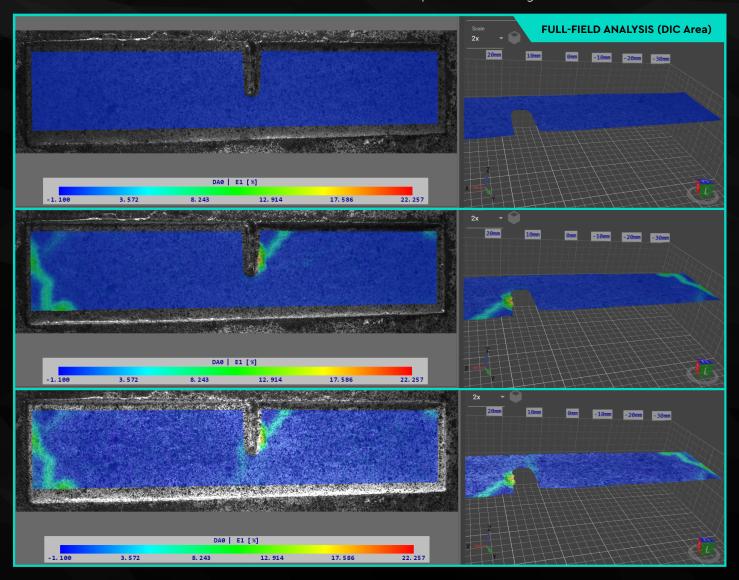

WHY CHOOSE X-SIGHT?

- Potential crack areas
- Volumetric change

- Professional engineering support
- Modular software
- Real-time and post-process evaluation

- External triggering available
 - Custom set-up for a wide range of applications
- Colorful strain visualization for real-time measurements

MEASUREMENT PROCESS AND TOOLS



POINT PROBE

The Point probe tracks the movement of a single position on the specimen in the specified directions.

DIC AREA

A full-field tool mapping displacement and strain distribution over a user-defined area. During the concrete solidification process shown below, its strain map corresponds to the changes in stiffness and color.

MEASUREMENT EVALUATION

The measured values enable to evaluate the volumetric changes of the solidifying concrete in the form. Also, locations with a high probability of failure under load are identified and evaluated employing a strain distribution map.